Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 44(2): 686-706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983866

RESUMO

Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Aurora Quinase B/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/uso terapêutico , Neoplasias/tratamento farmacológico , Aurora Quinase A/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
J Med Chem ; 65(2): 1536-1551, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35081714

RESUMO

Mutations of the rearranged during transfection (RET) kinase are frequently reported in cancer, which make it as an attractive therapeutic target. Herein, we discovered a series of N-trisubstituted pyrimidine derivatives as potent inhibitors for both wild-type (wt) RET and RETV804M, which is a resistant mutant for several FDA-approved inhibitors. The X-ray structure of a representative inhibitor with RET revealed that the compound binds in a unique pose that bifurcates beneath the P-loop and confirmed the compound as a type I inhibitor. Through the structure-activity relationship (SAR) study, compound 20 was identified as a lead compound, showing potent inhibition of both RET and RETV804M. Additionally, compound 20 displayed potent antiproliferative activity of CCDC6-RET-driven LC-2/ad cells. Analysis of RET phosphorylation indicated that biological activity was mediated by RET inhibition. Collectively, N-trisubstituted pyrimidine derivatives could serve as scaffolds for the discovery and development of potent inhibitors of type I RET and its gatekeeper mutant for the treatment of RET-driven cancers.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirimidinas/química , Adenocarcinoma de Pulmão/patologia , Apoptose , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-ret/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Cicatrização
3.
Antioxidants (Basel) ; 10(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573015

RESUMO

In the past few years, breast cancer has become the most prevalent type of cancer. The majority of patients receive combinatorial chemotherapy treatments, which may result in increased risk of developing drug resistance, a reduced quality of life, and substantial side effects. Treatment modalities that could lessen the physical toll of standard treatments or act in synergy with chemotherapeutic treatments would benefit women worldwide. Research into tocotrienols has thus far demonstrated their potential to be such an agent, with tocotrienols surpassing the pharmacological potential of tocopherols. Further research using in vitro and preclinical breast cancer models to support clinical trials is needed. This review uses bibliometric analysis to highlight this gap in research and summarizes the current and future landscape of tocotrienols as an anti-breast cancer agent.

4.
Eur J Med Chem ; 225: 113776, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34479037

RESUMO

FMS-like tyrosine kinase 3 (FLT3) with an internal tandem duplication (ITD) mutation has been validated as a driver lesion and a therapeutic target for acute myeloid leukemia (AML). Currently, several potent small-molecule FLT3 kinase inhibitors are being evaluated or have completed evaluation in clinical trials. However, many of these inhibitors are challenged by the secondary mutations on kinase domain, especially the point mutations at the activation loop (D835) and gatekeeper residue (F691). To overcome the resistance challenge, we identified a novel series of imidazo[1,2-a]pyridine-thiophene derivatives from a NIMA-related kinase 2 (NEK2) kinase inhibitor CMP3a, which retained inhibitory activities on FTL3-ITDD835V and FLT3-ITDF691L. Through this study, we identified the imidazo[1,2-a]pyridine-thiophene derivatives as type-I inhibitors of FLT3. Moreover, we observed compound 5o as an inhibitor displaying equal anti-proliferative activities against FLT3-ITD, FTL3-ITDD835Y and FLT3-ITDF691L driven acute myeloid leukemia (AML) cell lines. Meanwhile, the apoptotic effects of compound supported its mechanism of anti-proliferative action. These results indicate that the imidazo[1,2-a]pyridine-thiophene scaffold is promising for targeting acquired resistance caused by FLT3 secondary mutations and compound 5o is an interesting lead in this direction.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Quinases Relacionadas a NIMA/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Tiofenos/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estrutura Molecular , Mutação , Quinases Relacionadas a NIMA/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
5.
Eur J Med Chem ; 225: 113763, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34419892

RESUMO

The tumor microenvironment contains high concentrations of TGFß, a crucial immunosuppressive cytokine. TGFß stimulates immune escape by promoting peripheral immune tolerance to avoid tumoricidal attack. Small-molecule inhibitors of TGFßR1 are a prospective method for next-generation immunotherapies. In the present study, we identified selective 4-aminoquinoline-based inhibitors of TGFßR1 through structural and rational-based design strategies. This led to the identification of compound 4i, which was found to be selective for TGFßR1 with the exception of MAP4K4 in the kinase profiling assay. The compound was then further optimized to remove MAP4K4 activity, since MAP4K4 is vital for proper T-cell function and its inhibition could exacerbate tumor immunosuppression. Optimization efforts led to compound 4s that inhibited TGFßR1 at an IC50 of 0.79 ± 0.19 nM with 2000-fold selectivity against MAP4K4. Compound 4s represents a highly selective TGFßR1 inhibitor that has potential applications in immuno-oncology.


Assuntos
Aminoquinolinas/farmacologia , Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Estrutura Molecular , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/imunologia , Relação Estrutura-Atividade
6.
Adv Sci (Weinh) ; 8(20): e2102555, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34397171

RESUMO

DNA-binding proteins, including transcription factors (TFs), play essential roles in various cellular processes and pathogenesis of diseases, deeming to be potential therapeutic targets. However, these proteins are generally considered undruggable as they lack an enzymatic catalytic site or a ligand-binding pocket. Proteolysis-targeting chimera (PROTAC) technology has been developed by engineering a bifunctional molecule chimera to bring a protein of interest (POI) to the proximity of an E3 ubiquitin ligase, thus inducing the ubiquitination of POI and further degradation through the proteasome pathway. Here, the development of oligonucleotide-based PROTAC (O'PROTACs), a class of noncanonical PROTACs in which a TF-recognizing double-stranded oligonucleotide is incorporated as a binding moiety of POI is reported. It is demonstrated that O'PROTACs of lymphoid enhancer-binding factor 1 (LEF1) and ETS-related gene (ERG), two highly cancer-related transcription factors, successfully promote degradation of these proteins, impede their transcriptional activity, and inhibit cancer cell growth in vitro and in vivo. The programmable nature of O'PROTACs indicates that this approach is also applicable to destruct other TFs. O'PROTACs not only can serve as a research tool but also can be harnessed as a therapeutic arsenal to target DNA binding proteins for effective treatment of diseases such as cancer.


Assuntos
Proteínas de Ligação a DNA/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Neoplasias/genética , Oligonucleotídeos/genética , Humanos , Neoplasias/terapia , Oligonucleotídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Proteólise/efeitos dos fármacos , Regulador Transcricional ERG/genética , Ubiquitina-Proteína Ligases/genética
7.
Eur J Med Chem ; 223: 113660, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34246853

RESUMO

TGFß is crucial for the homeostasis of epithelial and neural tissues, wound repair, and regulating immune responses. Its dysregulation is associated with a vast number of diseases, of which modifying the tumor microenvironment is one of vital clinical interest. Despite various attempts, there is still no FDA-approved therapy to inhibit the TGFß pathway. Major mainstream approaches involve impairment of the TGFß pathway via inhibition of the TGFßRI kinase. With the purpose to identify non-receptor kinase-based inhibitors to impair TGFß signaling, an in-house chemical library was enriched, through a computational study, to eliminate TGFßRI kinase activity. Selected compounds were screened against a cell line engineered with a firefly luciferase gene under TGFß-Smad-dependent transcriptional control. Results indicated moderate potency for a molecule with phthalazine core against TGFß-Smad signaling. A series of phthalazine compounds were synthesized and evaluated for potency. The most promising compound (10p) exhibited an IC50 of 0.11 ± 0.02 µM and was confirmed to be non-cytotoxic up to 12 µM, with a selectivity index of approximately 112-fold. Simultaneously, 10p was confirmed to reduce the Smad phosphorylation using Western blot without exhibiting inhibition on the TGFßRI enzyme. This study identified a novel small-molecule scaffold that targets the TGFß pathway via a non-receptor-kinase mechanism.


Assuntos
Ftalazinas/química , Fator de Crescimento Transformador beta/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Ftalazinas/metabolismo , Ftalazinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/química , Proteínas Smad/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta/metabolismo
8.
J Med Chem ; 63(2): 441-469, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31550151

RESUMO

Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.


Assuntos
Cetonas/metabolismo , Metaboloma , Conformação Molecular , Animais , Desenho de Fármacos , Descoberta de Drogas , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Estereoisomerismo
9.
Tetrahedron ; 74(35): 4592-4600, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30344351

RESUMO

Carbon-carbon bonds are integral for pharmaceutical discovery and development. Frequently, C-C bond reactions utilize expensive catalyst/ligand combinations and/or are low yielding, which can increase time and expenditures in pharmaceutical development. To enhance C-C bond formation protocols, we developed a highly efficient, selective, and combinatorially applicable Friedel-Crafts acylation to acetylate the C-3 position of imidazo[1,2-a]pyridines. The reaction, catalyzed by aluminum chloride, is both cost effective and more combinatorial friendly compared to acetylation reactions requiring multiple, stoichiometric equivalents of AlCl3. The protocol has broad application in the construction of acetylated imidazo[1,2-a]pyridines with an extensive substrate scope. All starting materials are common and the reaction requires inexpensive, conventional heating methods for adaptation in any laboratory. Further, the synthesized compounds are predicted to possess GABA activity through a validated, GABA binding model. The developed method serves as a superior route to generate C-3 acetylated imidazo[1,2-a]pyridine building-blocks for combinatorial synthetic efforts.

10.
Chem Commun (Camb) ; 54(92): 12954-12957, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30375586

RESUMO

Multicomponent reactions (MCRs) are robust tools for the rapid synthesis of complex, small molecule libraries for use in drug discovery and development. By utilizing MCR chemistry, we developed a protocol to functionalize the C-3 position of imidazo[1,2-a]pyridine through a three component, decarboxylation reaction involving imidazo[1,2-a]pyridine, glyoxalic acid, and boronic acid.


Assuntos
Descoberta de Drogas , Imidazóis/síntese química , Piridinas/síntese química , Antineoplásicos/síntese química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Descarboxilação , Humanos , Modelos Químicos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...